๐Ÿ“Š Modern LLM Architecture Comparison

Comprehensive analysis of production LLM architectures from industry leaders - understanding design decisions, trade-offs, and innovations that shape 2025's AI landscape

This tutorial analyzes real production architectures from DeepSeek, Meta, Google, Mistral, Alibaba, and more - focusing on the architectural innovations that make modern LLMs work.

๐Ÿ•ฐ๏ธ The Architecture Evolution Timeline

Dec 2024
DeepSeek V3
MLA + MoE Revolution
Jan 2025
OLMo 2
Post-Norm + QK-Norm
Feb 2025
Gemma 3
Sliding Window 5:1
Mar 2025
Llama 4
Alternating MoE
May 2025
Kimi K2
1T Parameters

๐Ÿ—๏ธ Interactive Architecture Explorer

โšก DeepSeek V3 vs Llama 4: The MoE Showdown

๐ŸŽฏ Key Battle: Two of 2025's most important architectures take completely different approaches to Mixture of Experts and attention mechanisms.
๐Ÿง  DeepSeek V3 Strategy
MLA
Dense MoE
Shared Expert
Architecture Highlights:
โ€ข 671B total parameters, 37B active
โ€ข Multi-Head Latent Attention (MLA)
โ€ข 256 experts, 9 active (8 + 1 shared)
โ€ข MoE in every layer (except first 3)
โ€ข Compressed KV cache via MLA
โ€ข Expert size: 2,048 hidden units
MLA Compression:
K, V โ†’ compress โ†’ KV cache โ†’ decompress โ†’ attention
Memory savings: ~50% vs standard GQA
๐Ÿš€ Llama 4 Strategy
GQA
Sparse MoE
Alternating
Architecture Highlights:
โ€ข 400B total parameters, 17B active
โ€ข Grouped Query Attention (GQA)
โ€ข Fewer experts, 2 active per token
โ€ข Alternates MoE/dense every other layer
โ€ข Standard KV cache approach
โ€ข Expert size: 8,192 hidden units
Alternating MoE:
Layer 1: Dense โ†’ Layer 2: MoE โ†’ Layer 3: Dense...
Fewer active params but larger experts
VS

๐Ÿ“Š Head-to-Head Analysis

Aspect DeepSeek V3 Llama 4 Maverick Winner
Total Parameters 671B 400B DeepSeek (Capacity)
Active Parameters 37B 17B DeepSeek (More Active)
Attention Type MLA (compressed) GQA (standard) Trade-off
MoE Strategy Dense (every layer) Sparse (alternating) Different approaches
KV Cache Memory ~50% savings (MLA) Standard usage DeepSeek
Implementation Complex (MLA) Simpler (GQA) Llama 4
๐Ÿ† Key Insight: DeepSeek V3 optimizes for maximum capability and memory efficiency through MLA, while Llama 4 balances performance with implementation simplicity through proven GQA + alternating MoE.

๐ŸŽฏ Architecture Selection Guide

๐Ÿค” Which Architecture for Which Use Case?

๐Ÿ”ฌ Research & Experimentation
Best: OLMo 2, SmolLM3
Transparent
Well-documented
โ€ข Full training details available
โ€ข Clean, standard architectures
โ€ข Educational focus
๐Ÿญ Production Deployment
Best: Llama 4, Gemma 3
Proven
Optimized
โ€ข Battle-tested architectures
โ€ข Extensive optimization
โ€ข Ecosystem support
โšก Maximum Efficiency
Best: DeepSeek V3, Qwen3
MLA/MoE
Memory-efficient
โ€ข Cutting-edge optimizations
โ€ข Lowest inference cost
โ€ข Advanced techniques
๐Ÿ’ป Local Deployment
Best: Gemma 3, Qwen3 small
Sliding Window
Small variants
โ€ข Reduced memory usage
โ€ข Consumer hardware friendly
โ€ข Multiple size options

๐ŸŽฏ Attention Evolution Deep Dive

๐Ÿง  The Attention Revolution: From Multi-Head Attention to compressed representations - how modern LLMs optimize the memory bottleneck.
8192 tokens

๐Ÿ“Š Attention Mechanism Comparison

๐Ÿ”น Multi-Head Attention (MHA)
Original
Used by: Original Transformers, GPT-1/2
Heads: All independent K,V,Q
Memory: Highest (full KV cache)
Quality: Baseline performance
MHA Formula:
heads = n_heads
KV_cache = 2 ร— seq_len ร— n_heads ร— head_dim
Each head: independent K, V matrices
๐Ÿ”ธ Grouped Query Attention (GQA)
Proven
Used by: Llama 2/3/4, GPT-4, Gemma
Heads: Shared K,V across groups
Memory: ~4x reduction vs MHA
Quality: 99% of MHA performance
GQA Formula:
groups = n_heads // group_size
KV_cache = 2 ร— seq_len ร— groups ร— head_dim
Multiple Q heads share K,V pairs
๐Ÿ”บ Multi-Head Latent Attention (MLA)
Cutting-edge
Used by: DeepSeek V3, Kimi K2
Heads: Compressed latent space
Memory: ~50% of GQA usage
Quality: Matches/exceeds GQA
MLA Formula:
compressed_kv = low_rank_projection(K,V)
KV_cache = 2 ร— seq_len ร— compressed_dim
At inference: decompress โ†’ attention
๐Ÿ”ฒ Sliding Window Attention
Local-efficient
Used by: Gemma 3, Mistral, Longformer
Pattern: Local + sparse global
Memory: Linear in window size
Quality: Great for local patterns
Sliding Window:
window_size = 1024 (Gemma 3)
KV_cache = 2 ร— window_size ร— n_heads ร— head_dim
Constant memory regardless of sequence

๐Ÿ”ฌ Real Model Examples

Model Attention Type Heads Config KV Cache (8K seq) Innovation
GPT-4 GQA 128 Q heads, 8 KV heads ~16x compression Production-proven
Llama 4 GQA 64 Q heads, 8 KV heads ~8x compression Balanced efficiency
DeepSeek V3 MLA Compressed to 1024 dims ~50x compression Memory breakthrough
Gemma 3 Sliding GQA 16 Q heads, 4 KV, 1K window Constant memory Local efficiency

๐Ÿ“Š Normalization Strategy Analysis

๐ŸŽฏ Normalization Wars: The placement and type of normalization layers dramatically impacts training stability and final performance.

๐Ÿ—๏ธ Transformer Block Architectures

๐Ÿ”ต Pre-Norm (Modern)
Stable
Used by: Llama, GPT-3+, Gemma
Pattern: Norm โ†’ Attention โ†’ Add
Benefits: Training stability
Drawback: Slightly lower performance
x = x + attention(norm(x))
x = x + ffn(norm(x))
๐ŸŸข Post-Norm (Classic)
Original
Used by: Original Transformer, OLMo 2
Pattern: Attention โ†’ Add โ†’ Norm
Benefits: Better final performance
Drawback: Training instability
x = norm(x + attention(x))
x = norm(x + ffn(x))
๐ŸŸก QK-Norm (OLMo 2)
Innovative
Used by: OLMo 2, some research models
Pattern: Normalize inside attention
Benefits: Attention stability
Innovation: Prevents attention collapse
Q = norm_q(query_proj(x))
K = norm_k(key_proj(x))
attention(Q, K, V)
๐ŸŸฃ Pre+Post (Gemma 3)
Hybrid
Used by: Gemma 3
Pattern: Both normalizations
Benefits: Best of both worlds
Cost: Extra computation
x = norm_post(x + attention(norm_pre(x)))
x = norm_post(x + ffn(norm_pre(x)))

๐Ÿ“Š Training Stability Analysis

Strategy Training Stability Final Performance Implementation Used By
Pre-Norm Excellent Good Simple Llama, GPT-3+
Post-Norm Challenging Best Simple Original, OLMo 2
QK-Norm Excellent Good Moderate OLMo 2
Pre+Post Excellent Excellent Complex Gemma 3

๐Ÿ”„ Complete Model Architecture Showcase

๐ŸŽฏ 2025's Leading Architectures: Deep dive into each model's unique innovations and design philosophy.

๐Ÿ† Architecture Innovation Leaderboard

Innovation Pioneer Model Impact Adoption Future
MLA Compression DeepSeek V3 ๐Ÿ”ฅ Game-changing Early adoption Industry standard
Sliding Window 5:1 Gemma 3 ๐Ÿ”ฅ Memory breakthrough Growing fast Local model standard
Post-Norm Return OLMo 2 ๐Ÿ“ˆ Performance boost Research interest Specialized use
No Positional Embedding SmolLM3 ๐Ÿ“ˆ Simplification Experimental Small model trend
Alternating MoE Llama 4 ๐Ÿ”ฅ Balanced scaling Production proven MoE standard

โšก Efficiency Innovations Deep Dive

๐Ÿ’ก The Efficiency Revolution: Modern LLMs achieve better performance with fewer resources through architectural innovations.
70B parameters
8192 tokens

๐ŸŽฏ Sliding Window Mastery: Gemma 3's Innovation

๐Ÿ”„ Traditional Attention
Quadratic Memory
Full Attention:
Memory = O(seq_lenยฒ)
For 32K: 1B attention ops
KV Cache: Linear growth
Problem: Unsustainable scaling
๐ŸชŸ Sliding Window (Gemma 3)
Linear Memory
5:1 Window Strategy:
Window: 1024 tokens (vs 4096)
Memory = O(window_size)
For any seq: 1M attention ops
Result: 75% memory reduction
๐ŸŽฏ Gemma 3 Innovation: Revolutionary 5:1 compression ratio - reduced window from 4K to 1K tokens while maintaining 99% performance. This enables running 27B parameter models on consumer hardware.

๐Ÿšซ NoPE Revolution: SmolLM3's Position-Free Future

๐Ÿ“ Traditional Positioning
RoPE/Absolute
Standard Approach:
โ€ข Absolute positions (GPT)
โ€ข RoPE rotations (Llama)
โ€ข Learned embeddings
โ€ข ALiBi relative bias
โ†’ Extra parameters & computation
๐Ÿšซ No Positional Embeddings
Zero Position
NoPE Approach:
โ€ข No position information
โ€ข Pure content-based attention
โ€ข Causal masking only
โ€ข 15-20% parameter reduction
โ†’ Simpler, more efficient
๐Ÿ’ก NoPE Benefits: SmolLM3 proves that small models don't need positional embeddings. The causal attention mask provides sufficient ordering information, reducing parameters and simplifying architecture.

๐ŸŽฎ Interactive Architecture Builder

๐Ÿ› ๏ธ Build Your LLM: Mix and match components from leading architectures to design your optimal model.
70B parameters

๐ŸŽฏ Architecture Recommendation Engine

๐Ÿ”ฌ Performance Analysis & Deployment Guide

๐Ÿ“Š Real-World Performance: Comprehensive analysis of memory usage, inference speed, and deployment considerations.

๐Ÿ’พ Memory Usage Comparison

Model Parameters KV Cache (8K) Total Memory Efficiency Score
DeepSeek V3 671B (37B active) 12GB (MLA) ~180GB A+
Llama 4 400B (17B active) 24GB (GQA) ~120GB A
Gemma 3 27B (dense) 8GB (sliding) 54GB A+
Qwen3 235B 235B (22B active) 20GB (GQA) ~100GB B+

๐Ÿš€ Deployment Recommendations

โ˜๏ธ Cloud Deployment
Scalable
Best: DeepSeek V3, Llama 4
Hardware: 8xH100, A100
Benefits: Full capability
Cost: $2-5/hour
๐Ÿข Enterprise On-Prem
Secure
Best: Gemma 3, Qwen3
Hardware: 4xA6000, 4090
Benefits: Privacy control
Investment: $50-200K
๐Ÿ’ป Developer Local
Accessible
Best: SmolLM3, Gemma 3 small
Hardware: RTX 4090, M3 Max
Benefits: Instant iteration
Cost: $1-5K hardware
๐Ÿ“ฑ Edge Deployment
Efficient
Best: Quantized Gemma 3
Hardware: Mobile GPU, NPU
Benefits: Zero latency
Constraints: Limited capability
๐ŸŽฏ Key Takeaway: 2025's architectural innovations make powerful AI accessible across deployment scenarios - from trillion-parameter cloud models to efficient edge deployment.