Comprehensive analysis of production LLM architectures from industry leaders - understanding design decisions, trade-offs, and innovations that shape 2025's AI landscape
This tutorial analyzes real production architectures from DeepSeek, Meta, Google, Mistral, Alibaba, and more - focusing on the architectural innovations that make modern LLMs work.
๐ฐ๏ธ The Architecture Evolution Timeline
Dec 2024
DeepSeek V3
MLA + MoE Revolution
Jan 2025
OLMo 2
Post-Norm + QK-Norm
Feb 2025
Gemma 3
Sliding Window 5:1
Mar 2025
Llama 4
Alternating MoE
May 2025
Kimi K2
1T Parameters
๐๏ธ Interactive Architecture Explorer
โก DeepSeek V3 vs Llama 4: The MoE Showdown
๐ฏ Key Battle: Two of 2025's most important architectures take completely different approaches to Mixture of Experts and attention mechanisms.
๐ง DeepSeek V3 Strategy
MLA
Dense MoE
Shared Expert
Architecture Highlights:
โข 671B total parameters, 37B active
โข Multi-Head Latent Attention (MLA)
โข 256 experts, 9 active (8 + 1 shared)
โข MoE in every layer (except first 3)
โข Compressed KV cache via MLA
โข Expert size: 2,048 hidden units
MLA Compression:
K, V โ compress โ KV cache โ decompress โ attention
Memory savings: ~50% vs standard GQA
๐ Llama 4 Strategy
GQA
Sparse MoE
Alternating
Architecture Highlights:
โข 400B total parameters, 17B active
โข Grouped Query Attention (GQA)
โข Fewer experts, 2 active per token
โข Alternates MoE/dense every other layer
โข Standard KV cache approach
โข Expert size: 8,192 hidden units
Alternating MoE:
Layer 1: Dense โ Layer 2: MoE โ Layer 3: Dense...
Fewer active params but larger experts
VS
๐ Head-to-Head Analysis
Aspect
DeepSeek V3
Llama 4 Maverick
Winner
Total Parameters
671B
400B
DeepSeek (Capacity)
Active Parameters
37B
17B
DeepSeek (More Active)
Attention Type
MLA (compressed)
GQA (standard)
Trade-off
MoE Strategy
Dense (every layer)
Sparse (alternating)
Different approaches
KV Cache Memory
~50% savings (MLA)
Standard usage
DeepSeek
Implementation
Complex (MLA)
Simpler (GQA)
Llama 4
๐ Key Insight: DeepSeek V3 optimizes for maximum capability and memory efficiency through MLA, while Llama 4 balances performance with implementation simplicity through proven GQA + alternating MoE.
๐ฏ Architecture Selection Guide
๐ค Which Architecture for Which Use Case?
๐ฌ Research & Experimentation
Best: OLMo 2, SmolLM3
Transparent
Well-documented
โข Full training details available
โข Clean, standard architectures
โข Educational focus
๐ญ Production Deployment
Best: Llama 4, Gemma 3
Proven
Optimized
โข Battle-tested architectures
โข Extensive optimization
โข Ecosystem support
๐ฏ Gemma 3 Innovation: Revolutionary 5:1 compression ratio - reduced window from 4K to 1K tokens while maintaining 99% performance. This enables running 27B parameter models on consumer hardware.
NoPE Approach:
โข No position information
โข Pure content-based attention
โข Causal masking only
โข 15-20% parameter reduction
โ Simpler, more efficient
๐ก NoPE Benefits: SmolLM3 proves that small models don't need positional embeddings. The causal attention mask provides sufficient ordering information, reducing parameters and simplifying architecture.
๐ฎ Interactive Architecture Builder
๐ ๏ธ Build Your LLM: Mix and match components from leading architectures to design your optimal model.
70B parameters
๐ฏ Architecture Recommendation Engine
๐ฌ Performance Analysis & Deployment Guide
๐ Real-World Performance: Comprehensive analysis of memory usage, inference speed, and deployment considerations.
Best: SmolLM3, Gemma 3 small
Hardware: RTX 4090, M3 Max
Benefits: Instant iteration
Cost: $1-5K hardware
๐ฑ Edge Deployment
Efficient
Best: Quantized Gemma 3
Hardware: Mobile GPU, NPU
Benefits: Zero latency
Constraints: Limited capability
๐ฏ Key Takeaway: 2025's architectural innovations make powerful AI accessible across deployment scenarios - from trillion-parameter cloud models to efficient edge deployment.